Author:
Basińska Małgorzata,Kaczorek Dobrosława,Koczyk Halina
Abstract
This study presents a multi-objective optimisation of building thermo-modernisation for multi-family buildings. The applied model has considered alternative solutions for insulation materials, with different thicknesses and different types of windows. The weighted sum method was applied to find a solution considering the minimisation of global cost, primary energy ratio and CO2 emissions. The solutions were compared for a building equipped with natural ventilation, and with mechanical supply—exhaust ventilation. In reference to the two considered types of ventilation, we analysed how the modification of an insulation thickness, its type and the type of installed windows, can be converted into individual evaluation criteria. The weights of the considered criteria were changed; however, this had no influence on the optimal solution. If the aim is to achieve the standards of zero-energy buildings, natural ventilation cannot be applied, despite the high value of thermal insulation of the building envelopes. Alternative solutions exist for buildings with natural ventilation and mechanical ventilation with heat recovery, where the primary energy ratio is the same for both, but the global costs are different. The additional energy and environmental input for the production of materials and elements to be replaced are insignificant in comparison to the savings brought about by thermo-modernisation.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference48 articles.
1. Directive 2018/844 of the European Parliament and the Council of the 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency;Off. J. Eur. Union,2018
2. Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms
3. H2020 DRIVE O Projecthttps://www.drive0.eu
4. H2020 Step UP projecthttps://www.stepup-project.eu/
5. Building Energy Optimization Tools and Their Applicability in Architectural Conceptual Design Stage
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献