An Ensemble Learner-Based Bagging Model Using Past Output Data for Photovoltaic Forecasting

Author:

Choi SunghyeonORCID,Hur JinORCID

Abstract

As the world is aware, the trend of generating energy sources has been changing from conventional fossil fuels to sustainable energy. In order to reduce greenhouse gas emissions, the ratio of renewable energy sources should be increased, and solar and wind power, typically, are driving this energy change. However, renewable energy sources highly depend on weather conditions and have intermittent generation characteristics, thus embedding uncertainty and variability. As a result, it can cause variability and uncertainty in the power system, and accurate prediction of renewable energy output is essential to address this. To solve this issue, much research has studied prediction models, and machine learning is one of the typical methods. In this paper, we used a bagging model to predict solar energy output. Bagging generally uses a decision tree as a base learner. However, to improve forecasting accuracy, we proposed a bagging model using an ensemble model as a base learner and adding past output data as new features. We set base learners as ensemble models, such as random forest, XGBoost, and LightGBMs. Also, we used past output data as new features. Results showed that the ensemble learner-based bagging model using past data features performed more accurately than the bagging model using a single model learner with default features.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference47 articles.

1. Review of photovoltaic power forecasting

2. Renewables 2018—Market Analysis and Forecast from 2018 to 2023https://www.iea.org/renewables2018

3. Renewables 2019—Market Analysis and Forecast from 2019 to 2024https://www.iea.org/renewables2019

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3