Series DC Arc Simulation of Photovoltaic System Based on Habedank Model

Author:

Li Xinran,Pan Chenyun,Luo Dongmei,Sun Yaojie

Abstract

Despite the rapid development of photovoltaic (PV) industry, direct current (DC) fault arc remains a major threat to the safety of PV system and personnel. While extensive research on DC fault arc has been conducted, little attention has been paid to the long-time interactions between the PV system and DC arc. In this paper, a simulation system with an arc model and PV system model is built to overcome the inconvenience of the fault-arc experiments and understand the mechanism of these interactions. For this purpose, the characteristics of the series DC arc in a small grid-connected PV system are first investigated under uniform irradiance. Then, by comparing with different arc models, the Habedank model is selected to simulate the fault arc and a method to determine its parameters under DC arc condition is proposed. The trends of simulated arc waveforms are consistent with the measured data, whose fitting degree in adjusted R-squared is between 0.946 and 0.956. Finally, a phenomenon observed during the experiment, that the negative perturbation of the maximum power point tracking (MPPT) algorithm can reduce the arc current, is explained by the proposed model.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference61 articles.

1. NFPA 70: National Electrical Code,2011

2. Outline of Investigation for Photovoltaic (PV) DC Arc-Fault Circuit Protection,2011

3. A Novel DC Arc Fault Detection Method Based on Electromagnetic Radiation Signal

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3