Second-Order Approximation of the Seismic Reflection Coefficient in Thin Interbeds

Author:

Yang Zhen,Lu JunORCID

Abstract

As most of the lithostratigraphic reservoirs in China are thin interbeds, the study of seismic responses in thin interbeds is an integral part of lithologic reservoir exploration. However, at present, the research on seismic reflection coefficients of thin interbeds in exploration seismology is still weak, which leads to the lack of theoretical basis for the subsequent interpretation of amplitude variation with offset (AVO) related to thin interbed. To solve this problem, in this paper, we proposed second-order approximate equations of the seismic reflection coefficients in thin-bed and thin-interbed layers. Under the assumption of a small impedance contrast in layered media, we made a second-order approximation with a more evident physical meaning to the reflection coefficient calculation method proposed by Kennett. Then, based on the test of the single thin-layer theoretical model, it was confirmed that the second-order approximation equation of the PP-wave (reflected compressional wave) is accurate at incident angles less than 30°, and that of the PS-wave (converted shear wave) is accurate at wider incident angles. Finally, based on the single-thin-bed equations, the approximate equations of seismic reflection coefficients in thin interbeds were established, the validity of which was verified by the theoretical model. Our equations will be applicable to the calculation of PP- and PS-wave reflection coefficients in thin interbeds where internal multiples are difficult to suppress and transmission loss is hard to accurately compensate. This lays a theoretical foundation for improving the seismic prediction accuracy of lithologic reservoirs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3