Experimental Study on the Optimal Strategy for Power Regulation of Governing System of Hydropower Station

Author:

Wang CongORCID,Wang De-Kuan,Zhang Jian-Ming

Abstract

Active power instability during the power regulation process is a problem that affects the operation security of hydropower stations and the power grid. This paper focuses on the dynamic response to power regulation of a hydro-turbine governor in the power control mode. Firstly, the mathematical model for the hydro-turbine governing system connected to the power grid is established. Then, considering the effect of water hammer and the guide vane operating speed on power oscillation and reverse power regulation, a novel control strategy based on the S-curve acceleration and deceleration control algorithm (S-curve control algorithm) is proposed to improve power regulation. Furthermore, we carried out field tests in a real hydropower station in order to compare the regulation quality of the novel control strategy based on the S-curve control algorithm with the traditional linear control strategy. Finally, the obtained results show that the proposed optimal control strategy for the hydro-turbine governor improves the stability of power regulation by effectively suppressing reverse power regulation and overshoot. This study provides a good solution for the instability of power and reverse power regulation during the regulation process of the hydro-turbine governor in the power control mode.

Funder

the National Key Research and Development Project of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference46 articles.

1. Hydropower Status Reporthttps://www.hydropower.org/statusreport

2. China Renewable Energy Development Report 2019https://www.natureindex.com/institution-outputs/china/china-renewable-energy-engineering-institute-creei-power-china/5588b4e2140ba0e07b8b456e

3. China Electricity Councilhttps://www.cec.org.cn

4. Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3