Deep Learning Method Based on Physics Informed Neural Network with Resnet Block for Solving Fluid Flow Problems

Author:

Cheng Chen,Zhang Guang-Tao

Abstract

Solving fluid dynamics problems mainly rely on experimental methods and numerical simulation. However, in experimental methods it is difficult to simulate the physical problems in reality, and there is also a high-cost to the economy while numerical simulation methods are sensitive about meshing a complicated structure. It is also time-consuming due to the billion degrees of freedom in relevant spatial-temporal flow fields. Therefore, constructing a cost-effective model to settle fluid dynamics problems is of significant meaning. Deep learning (DL) has great abilities to handle strong nonlinearity and high dimensionality that attracts much attention for solving fluid problems. Unfortunately, the proposed surrogate models in DL are almost black-box models and lack interpretation. In this paper, the Physical Informed Neural Network (PINN) combined with Resnet blocks is proposed to solve fluid flows depending on the partial differential equations (i.e., Navier-Stokes equation) which are embedded into the loss function of the deep neural network to drive the model. In addition, the initial conditions and boundary conditions are also considered in the loss function. To validate the performance of the PINN with Resnet blocks, Burger’s equation with a discontinuous solution and Navier-Stokes (N-S) equation with continuous solution are selected. The results show that the PINN with Resnet blocks (Res-PINN) has stronger predictive ability than traditional deep learning methods. In addition, the Res-PINN can predict the whole velocity fields and pressure fields in spatial-temporal fluid flows, the magnitude of the mean square error of the fluid flow reaches to 10−5. The inverse problems of the fluid flows are also well conducted. The errors of the inverse parameters are 0.98% and 3.1% in clean data and 0.99% and 3.1% in noisy data.

Funder

Fundamental Research Fund for the Central Universities of China, and the Postgraduate Research

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3