Abstract
Cathodic protection efficiency of complex carbon steel structures in confined seawater environment was studied using a specific experimental device. Schematically, this device consisted of a Plexiglas matrix, crossed by a channel 50 cm long, 5 mm deep, 1.5 to 5 cm wide, which moreover included four bends at 90°. Seawater flowed continuously inside the channel over 12 steel coupons embedded in the Plexiglas matrix. Cathodic protection was applied at a constant potential of −1060 mV vs. Ag/AgCl-seawater with respect to a reference electrode located outside the channel, at the seawater flow entry. The potential of four selected coupons was monitored over time via a microelectrode set close to each coupon. It varied significantly with the distance separating the coupons from the channel entry. At the end of the 3.5-month experiment, a polarization curve was acquired. The residual corrosion rate under cathodic protection was estimated via the extrapolation of the anodic Tafel line. It varied from <1 µm yr−1 to 16 µm yr−1, depending on the potential reached by the coupon (between −900 and −1040 mV vs. Ag/AgCl-seawater) at the end of the experiment and on the properties of the calcareous deposit formed on the steel surface.
Reference15 articles.
1. Cathodic Protection of Steel in Sea Water With Magnesium Anodes★
2. Substrate, Surface Finish and Flow Rate Influences Upon Calcareous Deposit Structure and Properties;Mantel;Proceedings of the Corrosion NACE Conference 1990, NACE International,1990
3. Characterization of calcareous deposits in artificial seawater by impedance techniques
4. The Role of Porosity and Surface Morphology of Calcium Carbonate Deposits on the Corrosion Behavior of Unprotected API 5L X52 Rotating Disk Electrodes in Artificial Seawater
5. Cathodic Protection of Highly Complex and Shielded Components;Krupa;Proceedings of the Corrosion NACE Conference 2006, NACE International,2006
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献