A Systematic Review on the Integration of Remote Sensing and GIS to Forest and Grassland Ecosystem Health Attributes, Indicators, and Measures

Author:

Soubry IriniORCID,Doan Thuy,Chu Thuan,Guo Xulin

Abstract

It is important to protect forest and grassland ecosystems because they are ecologically rich and provide numerous ecosystem services. Upscaling monitoring from local to global scale is imperative in reaching this goal. The SDG Agenda does not include indicators that directly quantify ecosystem health. Remote sensing and Geographic Information Systems (GIS) can bridge the gap for large-scale ecosystem health assessment. We systematically reviewed field-based and remote-based measures of ecosystem health for forests and grasslands, identified the most important ones and provided an overview on remote sensing and GIS-based measures. We included 163 English language studies within terrestrial non-tropical biomes and used a pre-defined classification system to extract ecological stressors and attributes, collected corresponding indicators, measures, and proxy values. We found that the main ecological attributes of each ecosystem contribute differently in the literature, and that almost half of the examined studies used remote sensing to estimate indicators. The major stressor for forests was “climate change”, followed by “insect infestation”; for grasslands it was “grazing”, followed by “climate change”. “Biotic interactions, composition, and structure” was the most important ecological attribute for both ecosystems. “Fire disturbance” was the second most important for forests, while for grasslands it was “soil chemistry and structure”. Less than a fifth of studies used vegetation indices; NDVI was the most common. There are monitoring inconsistencies from the broad range of indicators and measures. Therefore, we recommend a standardized field, GIS, and remote sensing-based approach to monitor ecosystem health and integrity and facilitate land managers and policy-makers.

Funder

Natural Sciences and Engineering Research Council of Canada

Ministry of Parks, Culture and Sports, Saskatchewan

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3