Using Eco-Geographical Zoning Data and Crowdsourcing to Improve the Detection of Spurious Land Cover Changes

Author:

Zhu LingORCID,Gao Dejun,Jia Tao,Zhang Jingyi

Abstract

To address problems in remote sensing image change detection, this study proposes a method for identifying spurious changes based on an eco-geographical zoning knowledge base and crowdsourced data mining. After preliminary change detection using the super pixel cosegmentation method, eco-geographical zoning is introduced, and the rules of spurious change are collected based on the knowledge of expert interpreters, and from statistics on existing land cover products according to each eco-geographical zone. Uncertain changed patches with a high possibility of spurious change according to the eco-geographical zoning rule were published in the form of a map service on an online platform, and then crowd tagging information on spurious changed patches was collected. The Hyperlink-Induced Topic Search (HITS) algorithm was used to calculate the spurious change degree of changed patches. We selected the northern part of Laos as the experimental area and the Chinese GF-1 Wide Field View (WFV) images for change detection to verify the effectiveness of the method. The results show that the accuracy of change detection improves by 23% after removing the spurious changes. Spurious changes caused by clouds, river water turbidity, spectral differences in cultivated land before and after harvest, and changes in shrubs, grassland, and forest density, can be removed using an eco-geographical zoning knowledge base and crowdsourced data mining methods.

Funder

National Key Research and Development Program of China

Beijing Key Laboratory of Urban Spatial Information Engineering

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference40 articles.

1. Global Surface Covering Product Update and Integration;Zhu,2020

2. Remote Sensing Mapping of Global Land Cover;Chen,2016

3. Exploiting Cosegmentation and Geo-Eco Zoning for Land Cover Product Updating

4. Current situation and Prospect of multi temporal remote sensing image change detection;Zhang;J. Surv. Mapp.,2017

5. A spectral gradient difference based approach for land cover change detection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3