Underground Goaf Parameters Estimation by Cross-Iteration with InSAR Measurements

Author:

Zhang WeihaoORCID,Shi Jiancun,Yi Huiwei,Zhu Yan,Xu BingORCID

Abstract

Determining the geographic location and spatial distribution of underground goaf is of great significance for the prevention of mining subsidence hazards and the detection of illegal mining. However, traditional goaf detection techniques mainly focus on geophysical methods that are labor intensive, have low efficiency, and are expensive. Due to the large range and off-site monitoring capability of interferometric synthetic aperture radar (InSAR) techniques, research on goaf location detection based on InSAR measurements has been increasing. This paper proposes a new method for locating underground goaf based on cross-iteration and InSAR measurements. Firstly, the functional relationship between the geometric parameters of the goaf and the line of sight (LOS) deformation retrieved by InSAR techniques is constructed. Then, the three initial model parameters of the probability integration method (PIM) are determined by mining geological conditions. Finally, the cross-iteration method is used to determine the parameters to characterize the spatial location of underground goaf. The experimental results show that the average relative errors of the simulated experiment and the real experiment are 1.5% and 5.1%, respectively, and the inverted goaf parameters are in good agreement with the real values. Moreover, the proposed method only requires the main lithology of the overlying rock in the goaf and does not depend on the accuracy of PIM model parameters. Therefore, this method has engineering application value for the detection of goaf lacking actual measurement data or that caused by illegal mining.

Funder

National Natural Science Foundation of China

National Science Fund for Distinguished Young Scholars

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3