Using Canopy Measurements to Predict Soybean Seed Yield

Author:

Schmitz Peder K.ORCID,Kandel Hans J.ORCID

Abstract

Predicting soybean [Glycine max (L.) Merr.] seed yield is of interest for crop producers to make important agronomic and economic decisions. Evaluating the soybean canopy across a range of common agronomic practices, using canopy measurements, provides a large inference for soybean producers. The individual and synergistic relationships between fractional green canopy cover (FGCC), photosynthetically active radiation (PAR) interception, and a normalized difference vegetative index (NDVI) measurements taken throughout the growing season to predict soybean seed yield in North Dakota, USA, were investigated in 12 environments. Canopy measurements were evaluated across early and late planting dates, 407,000 and 457,000 seeds ha−1 seeding rates, 0.5 and 0.8 relative maturities, and 30.5 and 61 cm row spacings. The single best yield predictor was an NDVI measurement at R5 (beginning of seed development) with a coefficient of determination of 0.65 followed by an FGCC measurement at R5 (R2 = 0.52). Stepwise and Lasso multiple regression methods were used to select the best prediction models using the canopy measurements explaining 69% and 67% of the variation in yield, respectively. Including plant density, which can be easily measured by a producer, with an individual canopy measurement did not improve the explanation in yield. Using FGCC to estimate yield across the growing season explained a range of 49% to 56% of yield variation, and a single FGCC measurement at R5 (R2 = 0.52) being the most efficient and practical method for a soybean producer to estimate yield.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3