Abstract
Synoptic weather conditions can modulate short-term variations in the marine biophysical environment. However, the impact of large-scale synoptic circulation patterns (LSCPs) on variations in chlorophyll-a (chl-a) and sea surface temperature (SST) in the South China Sea (SCS) remains unclear. Using a T-mode principal component analysis method, four types of LSCP related to the Northwest Pacific subtropical high are objectively identified over the SCS for the summers of 2015–2018. Type 1 exhibits a lower chl-a concentration of <0.3 mg m−3 offshore of southern Vietnam with respect to the other three types. For Type 2, the high chl-a concentration zone (>0.3 mg m−3) along the coast of Guangdong exhibits the widest areas of coverage. The offshore chl-a bloom jet (>0.3 mg m−3) formed in southern Vietnam is the most obvious under Type 3. Under Type 4, the high chl-a concentration zone along the coast of Guangdong is the narrowest, while the chl-a concentration in the middle of the SCS is the lowest (<0.1 mg m−3). These type differences are mostly caused by the various monsoon circulations, local ocean mesoscale processes and resultant differences in localized precipitation, wind vectors, photosynthetically active radiation and SST. In particular, precipitation over land helps to transport nutrients from the land to the shore, which is conducive to the increase of chl-a. However, precipitation over ocean will dilute the upper seawater and reduce chl-a. Typhoons pump the deeper seawater with nutrients to the surface, and therefore make a positive contribution to chl-a in most offshore areas; however, they also disturb shallower water and hinder the growth of phytoplankton, making a negative contribution near the coast of Guangdong. In general, our findings will provide a better understanding of wind pump impact: the responses of marine biophysical environments to LSCPs.
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献