A Novel Framework for Rapid Detection of Damaged Buildings Using Pre-Event LiDAR Data and Shadow Change Information

Author:

Zhang Ying,Roffey Matthew,Leblanc Sylvain G.

Abstract

After a major earthquake in a dense urban area, the spatial distribution of heavily damaged buildings is indicative of the impact of the event on public safety. Timely assessment of the locations of severely damaged buildings and their damage morphologies using remote sensing approaches is critical for search and rescue actions. Detection of damaged buildings that did not suffer collapse can be highly challenging from aerial or satellite optical imagery, especially those structures with height-reduction or inclination damage and apparently intact roofs. A key information cue can be provided by a comparison of predicted building shadows based on pre-event building models with shadow estimates extracted from post-event imagery. This paper addresses the detection of damaged buildings in dense urban areas using the information of building shadow changes based on shadow simulation, analysis, and image processing in order to improve real-time damage detection and analysis. A novel processing framework for the rapid detection of damaged buildings without collapse is presented, which includes (a) generation of building digital surface models (DSMs) from pre-event LiDAR data, (b) building shadow detection and extraction from imagery, (c) simulation of predicted building shadows utilizing building DSMs, and (d) detection and identification of shadow areas exhibiting significant pre- and post-event differences that can be attributed to building damage. The framework is demonstrated through two simulated case studies. The building damage types considered are those typically observed in earthquake events and include height-reduction, over-turn collapse, and inclination. Total collapse cases are not addressed as these are comparatively easy to be detected using simpler algorithms. Key issues are discussed including the attributes of essential information layers and sources of error influencing the accuracy of building damage detection.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3