Abstract
In order to verify the accuracy of precipitable water vapor (PWV) in remote sensing and reanalysis datasets under different climatic conditions and ensure the reliability of analysis results, the performances of ERA-5 reanalysis PWV data and the Atmospheric Infrared Sounder (AIRS) remotely-sensed PWV data were tested in the northern Qinghai-Tibet Plateau by using weather balloon radiosonde data from meteorological stations from 2002 to 2016. The coincidence degree of total cloud cover was also verified, and then the PWV data precision with different levels of cloud cover was analyzed. The results show that: (1) Both ERA-5 and AIRS data underestimate PWV in the studied high plateau region, and higher altitude leads to greater deviation. (2) Compared with AIRS data, ERA-5 data have better consistency with radiosonde data in PWV and total cloud cover. (3) For the long-term trend of PWV, the ERA-5 data are the opposite to the radiosonde data with a clear sky, but both datasets showed a significant increasing trend in cloudy skies. It can be concluded that in high altitude areas, the ERA-5 data can be used for general analysis, but are not well qualified to reflect the changing trend of PWV under climate change.
Funder
Natural Science Foundation of Technology Department of Qinghai Province
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献