A Novel Lidar Signal Denoising Method Based on Convolutional Autoencoding Deep Learning Neural Network

Author:

Hu Minghuan,Mao Jiandong,Li Juan,Wang Qiang,Zhang Yi

Abstract

The lidar is susceptible to the dark current of the detector and the background light during the measuring process, which results in a significant amount of noise in the lidar return signal. To reduce noise, a novel denoising method based on the convolutional autoencoding deep-learning neural network is proposed. After the convolutional neural network was constructed to learn the deep features of lidar signal, the signal details were reconstructed by decoding part to obtain the denoised signal. To verify the feasibility of the proposed method, both the simulated signals and the actually measured signals by Mie-scattering lidar were denoised. Some comparisons with the wavelet threshold denoising method and the variational modal decomposition denoising method were performed. The results show the denoising effect of the proposed method was significantly better than the other two methods. The proposed method can eliminate complex noise in the lidar signal while retaining the complete details of the signal.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Ningxia Province

Plan for Leading Talents of the State Ethnic Affairs Commission of the People’s Republic of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3