Forced, Balanced, Axisymmetric Shallow Water Model for Understanding Short-Term Tropical Cyclone Intensity and Wind Structure Changes

Author:

Hendricks Eric A.ORCID,Vigh Jonathan L.ORCID,Rozoff Christopher M.ORCID

Abstract

A minimal modeling system for understanding tropical cyclone intensity and wind structure changes is introduced: Shallow Water Axisymmetric Model for Intensity (SWAMI). The forced, balanced, axisymmetric shallow water equations are reduced to a canonical potential vorticity (PV) production and inversion problem, whereby PV is produced through a mass sink (related to the diabatic heating) and inverted through a PV/absolute–angular–momentum invertibility principle. Because the invertibility principle is nonlinear, a Newton–Krylov method is used to iteratively obtain a numerical solution to the discrete problem. Two versions of the model are described: a physical radius version which neglects radial PV advection (SWAMI-r) and a potential radius version that naturally includes the advection in the quasi-Lagrangian coordinate (SWAMI-R). In idealized numerical simulations, SWAMI-R produces a thinner and more intense PV ring than SWAMI-r, demonstrating the role of axisymmetric radial PV advection in eyewall evolution. SWAMI-R always has lower intensification rates than SWAMI-r because the reduction in PV footprint effect dominates the peak magnitude increase effect. SWAMI-r is next demonstrated as a potentially useful short-term wind structure forecasting tool using the newly added FLIGHT+ Dataset azimuthal means for initialization and forcing on three example cases: a slowly intensifying event, a rapid intensification event, and a secondary wind maximum formation event. Then, SWAMI-r is evaluated using 63 intensifying cases. Even though the model is minimal, it is shown to have some skill in short-term intensity prediction, highlighting the known critical roles of the relationship between the radial structures of the vortex inertial stability and diabatic heating rate. Because of the simplicity of the models, SWAMI simulations are completed in seconds. Therefore, they may be of some use for hurricane nowcasting to short-term (less than 24 h) intensity and structure forecasting. Due to its favorable assumptions for tropical cyclone intensification, a potential use of SWAMI is a reasonable short-term upper-bound intensity forecast if the storm intensifies.

Funder

NOAA Weather Program Office

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3