A Method to Generate Experimental Aerosol with Similar Particle Size Distribution to Atmospheric Aerosol

Author:

Ren Jianlin,He Junjie,Li JiayuORCID,Liu Junjie

Abstract

The SARS-CoV virus spreads in the atmosphere mainly in the form of aerosols. Particle air filters are widely used in indoor heating, ventilation, and air-conditioning (HVAC) systems and filtration equipment to reduce aerosol concentration and improve indoor air quality. Requirements arise to rate filters according to their mass-based filtration efficiency. The size distribution of test aerosol greatly affects the measurement results of mass-based filtration efficiency and dust loading of filters, as well as the calibration of optical instruments for fine-particle (PM2.5) mass concentration measurement. The main objective of this study was to find a new method to generate a chemically nontoxic aerosol with a similar particle size distribution to atmospheric aerosol. We measured the size distribution of aerosols generated by DEHS (di-ethyl-hexyl-sebacate), PSL (poly-styrene latex), olive oil, and 20% sucrose solution with a collision nebulizer in a wide range of 15 nm–20 μm. Individually, none of the solutions generated particles that share a similar size distribution to atmospheric aerosol. We found that the 20% sucrose solution + olive oil mixture solution (Vss:Voo = 1:2) could be used to generate a chemically nontoxic aerosol with similar particle number/volume size distribution to the atmospheric aerosol (t-test, p < 0.05). The differences in the mass-base filtration efficiency measured by the generated aerosol and the atmospheric aerosol were smaller than 2% for MERV 7, 10, 13, and 16 rated filters. The aerosol generated by the new method also performed well in the calibration of optical-principle-based PM2.5 concentration measurement instruments. The average relative difference measured by a tapered element oscillating microbalance (TEOM) and a Dusttrak Model 8530 (calibrated by aerosol generated by the new method) was smaller than 5.8% in the real-situation measurement.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province, China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3