Vertical Characteristics of Secondary Aerosols Observed in the Seoul and Busan Metropolitan Areas of Korea during KORUS-AQ and Associations with Meteorological Conditions

Author:

Kim Jong-Min,Lee Hyo-JungORCID,Jo Hyun-Young,Jo Yu-Jin,Kim Cheol-HeeORCID

Abstract

In this study, the chemical components of aerosols observed at ground level and in upper layers during the Korea–United States Air Quality (KORUS-AQ) campaign were analyzed in two representative metropolitan areas of Korea: the Seoul metropolitan area (SMA) and the Busan-containing southeastern metropolitan area (BMA). First, we characterized emissions using the Clean Air Policy Support System (CAPSS) emission statistics, and compared them with both ground- and aircraft-based measurements obtained during the KORUS-AQ campaign. The emission statistics showed that the SMA had higher NOx levels, whereas BMA had significantly higher SO2 levels. Ground-level observations averaged for the summer season also showed SMA–nitrate and BMA–sulfate relationships, reflecting the CAPSS emission characteristics of both areas. However, organic carbon (OC) was higher in BMA than SMA by a factor of 1.7, despite comparable volatile organic compound (VOC) emissions in the two areas. DC-8 aircraft-based measurements showed that, in most cases, nitrogen-rich localities were found in the SMA, reflecting the emission characteristics of precursors in the two sampling areas, whereas sulfur-rich localities in the BMA were not apparent from either ground-based or aircraft observations. KORUS-AQ measurements were classified according to two synoptic conditions, stagnant (STG) and long-range transport (LRT), and the nitrate-to-sulfate (N/S) ratio in both ground and upper layers was higher in the SMA for both cases. Meanwhile, organic aerosols reflected local emissions characteristics in only the STG case, indicating that this stagnant synoptic condition reflect local aerosol characteristics. The LRT case showed elevated peaks of all species at altitudes of 1.0–3.5 km, indicating the importance of LRT processes for predicting and diagnosing aerosol vertical distributions over Northeast Asia. Other chemical characteristics of aerosols in the two metropolitan areas were also compared.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3