Mixed Temperature-Moisture Signal in δ18O Records of Boreal Conifers from the Permafrost Zone

Author:

Zharkov Mikhail S.ORCID,Fonti Marina V.ORCID,Trushkina Tatyana V.,Barinov Valentin V.ORCID,Taynik Anna V.ORCID,Porter Trevor J.,Saurer Matthias,Churakova (Sidorova) Olga V.

Abstract

Global climatic changes have been observed for all natural biomes, with the greatest impact in the permafrost zone. The short series of direct observations of air temperature and precipitation from meteorological stations for this territory make it difficult to use them in studies of the impact of climate change on forest and forest-tundra ecosystems, but only longer series of gridded data expand the temporal-spatial resolution of this analysis. We compared local and gridded air temperature, precipitation and vapor pressure deficit (VPD) data, analyzed the trends of their changes over the last century for three sites in the permafrost zone (YAK and TAY in Russia, and CAN in Canada), and estimated the effect of their variability on oxygen isotopes in the tree-ring cellulose (δ18Ocell) of three different species (Larix cajanderi Mayr, Larix gmelinii Rupr. Rupr and Piceaglauca (Moench) Voss). Climate trend analysis showed strong changes after the 1980s, and even more pronounced from 2000 to 2020. We revealed that δ18Ocell-YAK showed mixed signals of the July temperature (r = 0.49; p = 0.001), precipitation (r = −0.37; p = 0.02) and vapor pressure deficit (VPD) (r = 0.31; p = 0.02), while δ18Ocell-CAN captured longer March–May (r = 0.37, p = 0.001) and July (r = 0.32, p < 0.05) temperature signals as well as spring VPD (r = 0.54, p = 0.001). The δ18Ocell-TAY showed a significant correlation with air temperature in July (r = 0.23, p = 0.04) and VPD in March (r = −0.26, p = 0.03). The obtained eco-hydrological relationships indicate the importance of temperature and moisture to varying degrees, which can be explained by site- and species-specific differences.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3