Chemical Characterization, Source, and SOA Production of Intermediate Volatile Organic Compounds during Haze Episodes in North China

Author:

Feng Xinxin,Zhao Jinhu,Feng Yanli,Cai Junjie,Yan Caiqing,Chen Yingjun

Abstract

The growth of secondary organic aerosols (SOA) is a vital cause of the outbreaks of winter haze in North China. Intermediate volatile organic compounds (IVOCs) are important precursors of SOA. Therefore, the chemical characteristics, source, and SOA production of IVOCs during haze episodes have attracted much attention. Hourly time resolution IVOC samples during two haze episodes collected in Hebei Province in North China were analyzed in this study. Results showed that: (1) the concentration of IVOCs measured was within the range of 11.3~85.1 μg·cm−3 during haze episodes, with normal alkanes (n-alkanes), polycyclic aromatic hydrocarbons (PAHs), branched alkanes (b-alkanes), and the residue unresolved complex mixture (R-UCM) accounting for 8.6 ± 2.3%, 6.8 ± 2.2%, 24.1 ± 3.8%, and 60.5 ± 6.5% of IVOCs, respectively. NC12-nC15 in n-alkanes, naphthalene and its alkyl substitutes in PAHs, b-alkanes in B12–B16 bins, and R-UCM in B12–B16 bins are the main components, accounting for 87.0 ± 0.2%, 87.6 ± 2.9%, 85.9 ± 5.4%, 74.0 ± 8.3%, respectively. (2) Based on the component characteristics of IVOCs and the ratios of n-alkanes/b-alkanes in emission sources and the hourly variation of IVOCs during haze episodes, coal combustion (CC), biomass burning (BB), gasoline vehicles (GV), and diesel vehicles (DV)were identified as important emission sources of IVOCs in Hebei Province. (3) During haze episodes, temporal variation of the estimated SOA production based on different methods (such as IVOCs concentration, OC/ECmin tracer, and the PMF model) were similar; however, the absolute values were different. This difference may be due to the transformation of IVOCs to SOA affected by various factors such as SOA production from different IVOC components, meteorological conditions, atmospheric oxidation, etc.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3