Research Progress for Dynamic Effects of Cities on Precipitation: A Review

Author:

Yue Caijun,Han Zhihui,Gu Wen,Tang Yuqi,Ao Xiangyu

Abstract

Citization significantly changes original surface properties. City areas can cause surface winds to decrease; furthermore, ground friction can be transferred layer by layer through the momentum exchange of air movement, which affects the air layers above. Precipitation modification by city environments has been an active research area. Under the conditions of high wind speed, the dynamic effects of cities on precipitation are relatively obvious. Generally, the dynamic effects fall into two main categories: (1) for weather systems under weak forcing synoptic backgrounds, such as local convective systems, shorter-lived extreme precipitation events and fronts and city barrier effects can delay the movement of weather systems, directly change the horizontal distribution characteristics and occurrence time for precipitation, change the flow field and structure, cause the bifurcation of weather systems, and change the horizontal distribution characteristics of precipitation; (2) for weather systems under strong forcing synoptic backgrounds, such as extratropical systems (with large-scale moisture transport), monsoon systems, landfalling tropical cyclones, and supercell storms, the impact of the dynamic effects of cities cannot lead to the bifurcation of the weather system, nor can it change the horizontal distribution characteristics of the whole precipitation field, but it can have an impact on the local precipitation intensity and distribution. However, currently, people do not agree on the impact of cities on precipitation, especially regarding tropical cyclones. Hence, we provide a review and provide insights into the dynamic effects of cities on precipitation.

Funder

National Natural Science Foundation of China

Key projects of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3