The Economic Loss Prediction of Flooding Based on Machine Learning and the Input-Output Model

Author:

Chen AnqiORCID,You Shibing,Li Jiahao,Liu Huan

Abstract

As climate change becomes increasingly widespread, rapid, and intense, the frequency of heavy rainfall and floods continues to increase. This article establishes a prediction system using feature sets with multiple data dimensions, including meteorological data and socio-economic data. Based on data of historical floods in 31 provinces and municipalities in China from 2006 to 2018, five machine learning methods are compared to predict the direct economic losses. Among them, GBR performs the best with a goodness-of-fit of 90%. Combined with the input-output (IO) model, the indirect economic losses of agriculture to other sectors are calculated, and the total economic losses caused by floods can be predicted effectively by using the GBR-IO model. The model has a strong generalization ability with a minimum requirement of 80 pieces of data. The results of the data show that in China, provinces heavily reliant on agriculture suffered the most with the proportion of direct economic losses to provincial GDP exceeding 1‰. Therefore, some policy implications are provided to assist the government to take timely pre-disaster preventive measures and conduct post-disaster risk management, thereby reducing the economic losses caused by floods.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference37 articles.

1. Climate Change Widespread, Rapid, and Intensifying—IPCChttps://public.wmo.int/en/media/press-release/climate-change-widespread-rapid-and-intensifying-%E2%80%93-ipcc

2. Flood hazard in Hunan province of China: an economic loss analysis

3. A new economic loss assessment system for urban severe rainfall and flooding disasters based on big data fusion;Wu,2021

4. To facilitate the advance of risk analysis and crisis response in China

5. Social and Economic Impacts of Natural Disasters

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3