An Application of the LCZ Approach in Surface Urban Heat Island Mapping in Sofia, Bulgaria

Author:

Dimitrov StelianORCID,Popov Anton,Iliev Martin

Abstract

This article presents the results of the thermal survey of the capital of Bulgaria (Sofia) carried out in August 2019, with the application of an unmanned aerial system (UAS). The study is based on the concept of local climate zones (LCZs), taking into account the influence of the features of land use/land cover and urban morphology on the urban climate. The basic spatial units used in the study are presented in the form of a regular grid consisting of 3299 cells with sides of 250 × 250 m. A total of 13 types of LCZs were identified, of which LCZs 6, 5, 8, 4, D, and A form the largest share. In the thermal imaging of the surface, a stratified sampling scheme was applied, which allowed us to select 74 cells, which are interpreted as representative of all cells belonging to the corresponding LCZ in the urban space. The performed statistical analysis of the thermal data allowed us to identify both the most thermally loaded zones (LCZs 9, 4, and 5) and the cells forming Urban Cool Islands (mainly in LCZs D and C). The average surface temperature in Sofia during the study period (in the time interval between 8:00 p.m. and 10:00 p.m.) was estimated at 20.9 °C, and between the different zones it varied in the range 17.2–25.1 °C. The highest maximum values of LST (27.9–30.6 °C) were registered in LCZ 4 and LCZ 5. The relation between the spatial structure of the urban thermal patterns and urban surface characteristics was also analyzed. Regression analysis confirmed the hypothesis that as the proportion of green areas increases, surface temperatures decrease, and, vice versa, as the proportion of built-up and impermeable areas increases, surface temperatures increase. A heat load map (via applying a z-transformation to standardize the temperature values), a map of the average surface temperature, and a map of the average intensity of the heat island on the surface were generated in the GIS environment. The results of the study adequately reflect the complex spatial model of the studied phenomenon, which gives grounds to conclude that the research approach used is applicable to similar studies in other cities.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference91 articles.

1. The Climate of London, Deduced from Meteorological Observations, Made in the Metropolis, and at Various Places Around It;Howard,1833

2. Urban Climates

3. Luke Howard andThe Climate of London

4. Urban heat island dynamics in Montreal and Vancouver

5. Urban Microclimate: Designing the Spaces between Buildings;Erell,2011

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3