Comparative Analysis of Predictive Models for Fine Particulate Matter in Daejeon, South Korea

Author:

Chuluunsaikhan TserenpurevORCID,Heak Menghok,Nasridinov Aziz,Choi Sanghyun

Abstract

Air pollution is a critical problem that is of major concern worldwide. South Korea is one of the countries most affected by air pollution. Rapid urbanization and industrialization in South Korea have induced air pollution in multiple forms, such as smoke from factories and exhaust from vehicles. In this paper, we perform a comparative analysis of predictive models for fine particulate matter in Daejeon, the fifth largest city in South Korea. This study is conducted for three purposes. The first purpose is to determine the factors that may cause air pollution. Two main factors are considered: meteorological and traffic. The second purpose is to find an optimal predictive model for air pollutant concentration. We apply machine learning and deep learning models to the collected dataset to predict hourly air pollutant concentrations. The accuracy of the deep learning models is better than that of the machine learning models. The third purpose is to analyze the influence of road conditions on predicting air pollutant concentration. Experimental results demonstrate that considering wind direction and wind speed could significantly decrease the error rate of the predictive models.

Funder

Korea governmen

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference44 articles.

1. Ambient air pollution and its influence on human health and welfare: an overview

2. Environmental and Health Impacts of Air Pollution: A Review

3. The implication of the air quality pattern in South Korea after the COVID-19 outbreak

4. https://www.who.int/mediacentre/news/releases/2014/air-pollution/en

5. Temporal and spatial distribution of PM2.5 and PM10 pollution status and the correlation of particulate matters and meteorological factors during winter and spring in Beijing;Zhao;Environ. Sci.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3