Estimation of Biogas Generated in Two Landfills in South-Central Ecuador

Author:

Poma Paulina,Usca Marco,Polanco MaríaORCID,Toulkeridis TheofilosORCID,Mestanza-Ramón CarlosORCID

Abstract

The landfill is a final disposal technique to confine municipal solid waste (MSW), where organic matter is degraded generating leachate and biogas composed of methane gases (CH4), carbon dioxide (CO2) and other gases that contribute to global warming. The objective of the current research was to estimate the amount of biogas generated through the LandGEM 3.03 mathematical model to determine the amount of electrical energy generated and the number of homes that would be supplied with electrical energy from 2021 to 2144. As a result of the application, it was estimated that in the Pichacay landfill, the highest point of biogas generation in 2053 would be 76,982,177 (m3/year) that would generate 81,226,339.36 (kWh/year), and would supply 5083 homes with electricity. Similarly, in the Las Iguanas landfill, the highest point would be 693,975,228 (m3/year) of biogas that produces 73,223,5296.7 (kWh/year) and would supply electricity to 45,825 homes. Of the performed gas analyses in the Pichacay landfill in 2020, an average of 51.49% CH4, 40.35% CO2, 1.75% O2 and 17.8% H2S was presented, while in the Las Iguanas landfill, for 2020 and 2021, we obtained an average of 51.88/CH4, 36.62% CO2, 1.01% O2 and 187.58 ppm H2S. Finally, the biogas generated by being harnessed minimizes the impacts related to global warming and climate change and would contribute electricity to the nearby communities.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference59 articles.

1. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

2. Aterros sanitários para geração de energia elétrica a partir da produção de biogás no Brasil: comparação dos modelos LandGEM (EPA) e Biogás (Cetesb)

3. A Global Snapshot of Solid Waste Management to 2050;Kaza,2018

4. A techno-economic analysis of EU renewable electricity policy pathways in 2030

5. Evaluation of optimal model parameters for prediction of methane generation from selected U.S. landfills

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3