Multi-Scale Object-Based Probabilistic Forecast Evaluation of WRF-Based CAM Ensemble Configurations

Author:

Wilkins Andrew,Johnson Aaron,Wang Xuguang,Gasperoni Nicholas A.,Wang Yongming

Abstract

Convection-allowing model (CAM) ensembles contain a distinctive ability to predict convective initiation location, mode, and morphology. Previous studies on CAM ensemble verification have primarily used neighborhood-based methods. A recently introduced object-based probabilistic (OBPROB) framework provides an alternative and novel framework in which to re-evaluate aspects of optimal CAM ensemble design with an emphasis on ensemble storm mode and morphology prediction. Herein, we adopt and extend the OBPROB method in conjunction with a traditional neighborhood-based method to evaluate forecasts of four differently configured 10-member CAM ensembles. The configurations include two single-model/single-physics, a single-model/multi-physics, and a multi-model/multi-physics configuration. Both OBPROB and neighborhood frameworks show that ensembles with more diverse member-to-member designs improve probabilistic forecasts over single-model/single-physics designs through greater sampling of different aspects of forecast uncertainties. Individual case studies are evaluated to reveal the distinct forecast features responsible for the systematic results identified from the different frameworks. Neighborhood verification, even at high reflectivity thresholds, is primarily impacted by mesoscale locations of convective and stratiform precipitation across scales. In contrast, the OBPROB verification explicitly focuses on convective precipitation only and is sensitive to the morphology of similarly located storms.

Funder

National Oceanic and Atmospheric Administration

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3