Tracking Airborne Pollution with Environmental Magnetism in A Medium-Sized African City

Author:

Dawaï Daouda,Macouin MélinaORCID,Rousse SoniaORCID,Léon Jean-FrançoisORCID,Gountié Dedzo Merlin,Drigo Loïc

Abstract

As in other parts of the world, air pollution over West and Central Africa has major health and meteorological impacts. Air quality assessment and its possible sanitary impact have become essential even in medium-sized towns, therefore amplifying the need for easy-to-implement monitoring methods with low environmental impact. We present here the potential of magnetic methods to monitor air quality at street level in the medium-sized city of Maroua (northern Cameroon) affected by dust-laden desert winds. More than five hundred (544) samples of bark and leaves taken from Neem trees in Maroua were analyzed. Magnetic susceptibility, saturation remanence, and S-ratio were found to determine the concentration and nature of magnetic particles. They are dominated by magnetite-like particle signals as a part of particulate emissions due to urban activities, including both traffic, composed of a substantial proportion of motorcycles, and wood burning for food preparation. We show that both bark and leaves from Neem trees are adequate passive bio-recorders. The use of both enables different times and heights to be sampled, allowing for the high-resolution monitoring, in terms of spatialization, of various urban environments. Particle emissions require assessment and screening that could be carried out rapidly and efficiently by magnetic methods on bio-recorders, even in cities impacted by dust-laden wind.

Funder

Agence Nationale de la Recherche

Conseil National de la Recherche Scientifique

Institut de Recherche pour le Développement

Belmont Forum

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3