Improving the Near-Surface Wind Forecast around the Turpan Basin of the Northwest China by Using the WRF_TopoWind Model

Author:

Ma Hui,Ma Xiaolei,Mei Shengwei,Wang FeiORCID,Jing Yanwei

Abstract

Wind energy is a type of renewable and clean energy which has attracted more and more attention all over the world. The Northwest China is a region with the most abundant wind energy not only in China, but also in the whole world. To achieve the goal of carbon neutralization, there is an urgent need to make full use of wind energy in Northwest China and to improve the efficiency of wind power generation systems in this region. As forecast accuracy of the near-surface wind is crucial to wind-generated electricity efficiency, improving the near-surface wind forecast is of great importance. This study conducted the first test to incorporate the subgrid surface drag into the near-surface wind forecast under the complex terrain conditions over Northwest China by using two TopoWind models added by newer versions of the Weather Research and Forecasting (WRF) model. Based on three groups (each group had 28 runs) of forecasts (i.e., Control run, Test 01 and Test 02) started at 12:00 UTC of each day (ran for 48 h) during the period of 1–28 October 2020, it was shown that, overall, both TopoWind models could improve the near-surface wind speed forecasts under the complex terrain conditions over Northwest China, particularly for reducing the errors associated with the forecast of the wind-speed’s magnitude. In addition to wind forecast, the forecasts of sea level pressure and 2-m temperature were also improved. Different geographical features (wind-farm stations located south of the mountain tended to have more accurate forecast) and weather systems were found to be crucial to forecast accuracy. Good forecasts tended to appear when the simulation domain was mainly controlled by the high-pressure systems with the upper-level jet far from it.

Funder

Science and Technology Foundation of State Grid Corporation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3