Study on Icing Environment Judgment Based on Radar Data

Author:

Wang JinhuORCID,Xie Binze,Cai Jiahan,Wang Yuhao,Chen Jiang

Abstract

As a major threat to aviation flight safety, it is particularly important to make accurate judgments and forecasts of the ice accumulation environment. Radar is widely used in civil aviation and meteorology, and has the advantages of high timeliness and resolution. In this paper, a variety of machine learning methods are used to establish the relationship between radar data and icing index (Ic) to determine the ice accumulation environment. The research shows the following. (1) A linear model was established, based on the scattering rate factor (Zh), radial velocity (v), spectral width (w), velocity standard deviation (σ) detected by 94 GHz millimeter wave radar, and backward attenuation coefficient (β) detected by 905 nm lidar, so linear regression was carried out. After principal component analysis (PCA), the correction determination coefficient of the linear equation was increased from 0.7127 to 0.7240. (2) Ice accumulation was unlikely for samples that were significantly off-center. By clustering the data into three or four categories, the proportion of icing lattice points could be increased from 18.81% to 33.03%. If the clustering number was further increased, the ice accumulation ratio will not be further increased, and the increased classification is reflected in the classification of pairs of noises and the possibility of omission is also increased. (3) Considering the classification and nonlinear factors of ice accumulation risk, the neural network method was used to judge the ice accumulation environment. Two kinds of neural network structures were established for quantitative calculation: Structure 1 first distinguished whether there was ice accumulation, and further calculated the icing index for the points where there was ice accumulation; Structure 2 directly calculated the temperature and relative humidity, and calculated the icing index according to definition. The accuracy of the above two structures could reach nearly 60%, but the quantitative judgment of the ice accumulation index was not ideal. The reasons for this dissatisfaction may be the small number of variables and samples, the interval between time and space, the difference in instrument detection principle, and the representativeness of the ice accumulation index. Further research can be improved from the above four points. This study can provide a theoretical basis for the diagnosis and analysis of the aircraft ice accumulation environment.

Funder

National Natural Science Foundation of China

the 63rd Batch of China Postdoctoral Science Foundation in General

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3