Construction of a Simple Domeless Net Radiometer for Demonstrating Energy Balance Concepts in a Laboratory Activity

Author:

Da Ros Carvalho Henrique,McInnes Kevin J.,Heilman James L.

Abstract

Even though energy balance concepts are fundamental to solutions of problems in a number of disciplines in the agricultural and life sciences, they are seldom demonstrated in a laboratory activity. Here, we introduce a simple domeless net radiometer to demonstrate how the surface temperature of an object aboveground is regulated by the properties of the surfaces and environmental conditions. The device is based on the early designs of all-wave net radiometers and is composed of a foam disc with its opposing surfaces coated with either white or black paint. Temperatures of the disc’s surfaces are monitored using thermocouple temperature sensors. Using a combination of solar irradiance, albedo of the ground surface, air temperature, and wind speed measurements, the temperatures of the disc’s surfaces can be calculated by means of an energy balance model. We found good agreement between calculated and measured temperatures. In addition to demonstrate important physical concepts under natural outdoor conditions, we believe that the proposed laboratory activity will benefit students by allowing them to gain some experience and practical skills in working with environmental sensors, programming data acquisition systems, and analyzing data. Stimulating students’ creativity as well as developing their analytical and problem-solving skills is another goal of the proposed activity.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference26 articles.

1. An Introduction to Environmental Biophysics;Campbell,1998

2. Principles of Environmental Physics;Monteith,2013

3. AN IMPROVED NET-RADIATION INSTRUMENT

4. An Economical Net Radiometer

5. Use of an Economical Thermal Transducer as a Net Radiometer 1

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3