Assessment of Aerosol Mechanisms and Aerosol Meteorology Feedback over an Urban Airshed in India Using a Chemical Transport Model

Author:

Gupta Medhavi,Mohan Manju

Abstract

The direct aerosol-radiative effects in the WRF-Chem model account for scattering/absorption of solar radiation due to aerosols, while aerosol–cloud interactions result in modifying wet scavenging of the ambient concentrations as an indirect aerosol effect. In this study, impact of aerosol on meteorological parameters, PM10 and ozone concentrations are analysed which revealed (i) that a net decrease in shortwave and longwave radiation by direct feedback results in decrease in temperature up to 0.05 K, (ii) that a net increase due to longwave and shortwave radiation when both direct and indirect effects are taken together results in an increase in temperature up to 0.25 K (where the mean of temperature is 33.5 °C and standard deviation 2.13 °C), (iii) a marginal increase in boundary layer height of 50 m with increase in temperature with feedbacks, (iv) overall net increase in radiation by direct and indirect effect together result in an increase in PM10 concentration up to 12 μg m−3 (with PM10 mean as 84.5 μg m−3 and standard deviation 28 μg m−3) and an increase in ozone concentration up to 3 μg m−3 (with ozone mean as 29.65 μg m−3 and standard deviation 5.2 μg m−3) mainly due to net increase in temperature. Furthermore, impact of sensitivity of different aerosol mechanisms on PM10 concentrations was scrutinized for two different mechanisms that revealed underestimation by both of the mechanisms with MOSAIC scheme, showing less fractional bias than MADE/SORGAM. For the dust storm period, MOSAIC scheme simulated higher mass concentrations than MADE/SORGAM scheme and performed well for dust-storm days while closely capturing the peaks of high dust concentrations. This study is one of the first few to demonstrate the impact of both direct and indirect aerosol feedback on local meteorology and air quality using a meteorology–chemistry modelling framework; the WRF-Chem model in a tropical urban airshed in India located in semi-arid climatic zone. It is inferred that semi-arid climatic conditions behave in a vastly different manner than other climatic zones for direct and indirect radiative feedback effects.

Funder

Ministry of Earth Sciences

Indian Institute of Technology Delhi

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3