Viability of Bacillus subtilis Cells in Airborne Bioaerosols on Face Masks

Author:

Lee Eun-Hee,Chang YunsooORCID,Lee Seung-Woo

Abstract

The coronavirus disease 2019 (COVID-19) pandemic is a general health crisis and has irreversible impacts on human societies. Globally, all people are at risk of being exposed to the novel coronavirus through transmission of airborne bioaerosols. Public health actions, such as wearing a mask, are highly recommended to reduce the transmission of infectious diseases. The appropriate use of masks is necessary for effectively preventing the transmission of airborne bioaerosols. The World Health Organization (WHO) suggests washing fabric masks or throwing away disposable masks after they are used. However, people often use masks more than once without washing or disposing them. The prolonged use of a single mask might—as a result of the user habitually touching the mask—promote the spread of pathogens from airborne bioaerosols that have accumulated on the mask. Therefore, it is necessary to evaluate how long the living components of bioaerosols can be viable on the masks. Here, we evaluated the viability of airborne Bacillus subtilis (B. subtilis) in bioaerosols filtered on woven and anti-droplet (non-woven) face masks. As a simulation of being simultaneously exposed to sand dust and bioaerosols, the viability rates of bioaerosols that had accumulated on masks were also tested against fine dust and airborne droplets containing bacteria. The bioaerosols survived on the masks immediately after the masks were used to filter the bioaerosols, and the bacteria significantly proliferated after one day of storage. Thereafter, the number of viable cells in the filtered bioaerosols gradually decreased over time, and the viability of B. subtilis in bioaerosols on the masks varied, depending on the mask material used (woven or non-woven). Despite the reduction in viability, bioaerosols containing living components were still found in both woven and anti-droplet masks even after six days of storage and it took nine days not to have found them on masks. The number of viable cells in bioaerosols on masks significantly decreased upon exposure of the masks to fine dust. The results of this study should provide useful information on how to appropriately use masks to increase their duration of effectiveness against bioaerosols.

Funder

National Research Foundation of Korea

Pusan National University

Research Fund Program of Research Institute for Basic Sciences, Pusan National University, Korea, 2020

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference29 articles.

1. Personal Protective Equipment for Healthcare Workers during the COVID-19 Pandemic

2. WHO Coronavirus Disease (COVID-19) Dashboard (8 September 2021) https://covid19.who.int/

3. 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Health Care Settings

4. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination

5. Coronavirus Disease (COVID-19) Advice for the Public https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3