Spatial and Temporal Distributions of Air Pollutants in Nanchang, Southeast China during 2017–2020

Author:

Wang Xiaoman,Liu Min,Luo Li,Chen Xi,Zhang Yongyun,Zhang Haoran,Yang Shudi,Li Yuxiao

Abstract

In response to COVID-19 in December 2019, China imposed a strict lockdown for the following two months, which led to an unprecedented reduction in industrial activities and transportation. However, haze pollution was still recorded in many Chinese cities during the lockdown period. To explore temporal and spatial variations in urban haze pollution, concentrations of air pollutants (PM2.5, PM10, SO2, CO, NO, NO2, and O3) from April 2017 to March 2020 were observed at 23 monitoring stations throughout Nanchang City (including one industrial site, sixteen urban central sites, two mountain sites, and four suburban sites). Overall, the highest concentrations of PM2.5, PM10, and SO2 were observed at industrial sites and the highest CO and NOx (NO and NO2) concentrations were recorded at urban sites. The air pollutants at mountain sites all showed the lowest concentrations, which indicated that anthropogenic activities are largely responsible for air pollutants. Concentrations of PM2.5, PM10, CO, NO, and NO2 showed similar season trends, that is, the highest levels in winter and lowest concentrations in summer, but an opposite season pattern for O3. Except for a sharply dropping pattern from January to May 2018, there were no seasonal patterns for SO2 concentration in all the observed sites. Daily PM2.5, PM10, CO, NOx, and SO2 concentrations showed a peak during the morning commute, which indicated the influences of anthropogenic activities on PM2.5, PM10, CO, NOx, and SO2. PM2.5, PM10, NOx, and CO concentrations at industrial, urban, and suburban sites were higher during nighttime than during daytime, but they showed the opposite pattern at mountain sites. In addition, PM2.5, PM10, CO, and NOx concentrations were lower during the lockdown period (D2) than those before the lockdown (B1). After the lockdown was lifted (A3), PM2.5, PM10, CO, and NOx concentrations showed a slowly increasing trend. However, O3 concentrations continuously increased from B1 to A3.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3