A Study on Synoptic Conditions Leading to the Extreme Rainfall in Taiwan during 10–12 June 2012

Author:

Wang An-Hsiang,Wang Chung-Chieh,Chen George Tai-Jen

Abstract

During 10–12 June 2012, heavy rainfall occurred three days in a row in southern and central Taiwan, with daily rainfall maxima exceeding 500 mm on each day. In the Mei-yu season (May–June) during 1993–2000, only two other rainfall events had a comparable amount and duration, but this case was the only one that occurred well before the arrival of the Mei-yu front. The synoptic conditions and their evolution leading to this unique event are thus important and are the foci of this study. Our analysis indicates that the 10–12 June 2012 event in Taiwan was caused by the strong and persistent west-southwesterly low-level jet (LLJ) that transported warm, moist, and unstable air from upstream and then impinged on the island. The LLJ developed due to the enhanced horizontal pressure (or height) gradient when the pressure at low-levels fell significantly (by ~8 hPa) in South China (north of the jet) during 8–10 June, but the subtropical high to the southeast maintained its strength. Further, through a diagnosis using the pressure tendency equation, it is found that both warm air advection and the dynamic effects (column divergence and transport of mass by vertical motion) contributed to the pressure fall in South China. The warm air advection occurred in the southern part of a large-scale confluent pattern in China, and the persistent west-southwesterly flow through deep layer (mainly above 800 hPa) in South China transported warmer and less dense air into the region from lower latitudes. On the other hand, South China was also located under the diffluent zone in the northeastern quadrant of the South Asian upper-level anticyclone, which strengthened during 5–10 June and provided divergence aloft, which exceeded the low-level convergence and upward transport of mass (at a fixed height) into the column by vertical motion on 9 June. As a result, the dynamic effects also contributed to the pressure fall, although secondary to the warm air advection. The destabilization process in South China during 8–10 June was also helpful to increase convective activity and upper-level divergence.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Changes in extreme precipitation in Taiwan's Mei‐yu season;Quarterly Journal of the Royal Meteorological Society;2023-05-25

2. Idealized simulations of Mei-yu rainfall in Taiwan under uniform southwesterly flow using a cloud-resolving model;Natural Hazards and Earth System Sciences;2022-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3