Abstract
The Weather Research and Forecasting (WRF) model is used to investigate convection–aerosol interactions in the United Arab Emirates (UAE) for a summertime convective event. Both an idealized and climatological aerosol distributions are considered. The convection on 14 August 2013 was triggered by the low-level convergence of the cyclonic circulation associated with the Arabian Heat Low (AHL) and the daytime sea-breeze circulation. Numerical experiments reveal a high sensitivity to aerosol properties. In particular, replacing 20% of the rural aerosols by carbonaceous particles has a comparable impact on the surface radiative fluxes to increasing the aerosol loading by a factor of 10. In both cases, the UAE-averaged net shortwave flux is reduced by ~90 W m−2 while the net longwave flux increases by ~51 W m−2. However, when the aerosol composition is changed, WRF generates 20% more precipitation than when the aerosol loading is increased, due to a broader and weaker AHL. The surface downward and upward shortwave and upward longwave radiation fluxes are found to scale linearly with the aerosol loading. An increase in the amount of aerosols also leads to drier conditions and a delay in the onset of convection due to changes in the AHL.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献