Human 3D Pose Estimation with a Tilting Camera for Social Mobile Robot Interaction

Author:

Garcia-Salguero MercedesORCID,Gonzalez-Jimenez JavierORCID,Moreno Francisco-AngelORCID

Abstract

Human–Robot interaction represents a cornerstone of mobile robotics, especially within the field of social robots. In this context, user localization becomes of crucial importance for the interaction. This work investigates the capabilities of wide field-of-view RGB cameras to estimate the 3D position and orientation (i.e., the pose) of a user in the environment. For that, we employ a social robot endowed with a fish-eye camera hosted in a tilting head and develop two complementary approaches: (1) a fast method relying on a single image that estimates the user pose from the detection of their feet and does not require either the robot or the user to remain static during the reconstruction; and (2) a method that takes some views of the scene while the camera is being tilted and does not need the feet to be visible. Due to the particular setup of the tilting camera, special equations for 3D reconstruction have been developed. In both approaches, a CNN-based skeleton detector (OpenPose) is employed to identify humans within the image. A set of experiments with real data validate our two proposed methods, yielding similar results than commercial RGB-D cameras while surpassing them in terms of coverage of the scene (wider FoV and longer range) and robustness to light conditions.

Funder

European Regional Development Fund

European Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SlowFastFormer for 3D human pose estimation;Computer Vision and Image Understanding;2024-06

2. Design and Implementation of Adam: A Humanoid Robotic Head with Social Interaction Capabilities;Applied System Innovation;2024-05-27

3. Skeletal Video Anomaly Detection Using Deep Learning: Survey, Challenges, and Future Directions;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-04

4. H3WB: Human3.6M 3D WholeBody Dataset and Benchmark;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

5. Privacy-Preserving User Pose Prediction for Safe and Efficient Human-Robot Interaction;2023 IEEE 19th International Conference on Automation Science and Engineering (CASE);2023-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3