A Multi-Scale Directional Line Detector for Retinal Vessel Segmentation

Author:

Khawaja Ahsan,Khan Tariq M.ORCID,Khan Mohammad A. U.,Nawaz Syed JunaidORCID

Abstract

The assessment of transformations in the retinal vascular structure has a strong potential in indicating a wide range of underlying ocular pathologies. Correctly identifying the retinal vessel map is a crucial step in disease identification, severity progression assessment, and appropriate treatment. Marking the vessels manually by a human expert is a tedious and time-consuming task, thereby reinforcing the need for automated algorithms capable of quick segmentation of retinal features and any possible anomalies. Techniques based on unsupervised learning methods utilize vessel morphology to classify vessel pixels. This study proposes a directional multi-scale line detector technique for the segmentation of retinal vessels with the prime focus on the tiny vessels that are most difficult to segment out. Constructing a directional line-detector, and using it on images having only the features oriented along the detector’s direction, significantly improves the detection accuracy of the algorithm. The finishing step involves a binarization operation, which is again directional in nature, helps in achieving further performance improvements in terms of key performance indicators. The proposed method is observed to obtain a sensitivity of 0.8043, 0.8011, and 0.7974 for the Digital Retinal Images for Vessel Extraction (DRIVE), STructured Analysis of the Retina (STARE), and Child Heart And health Study in England (CHASE_DB1) datasets, respectively. These results, along with other performance enhancements demonstrated by the conducted experimental evaluation, establish the validity and applicability of directional multi-scale line detectors as a competitive framework for retinal image segmentation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3