A Novel Pigeon-Inspired Optimization Based MPPT Technique for PV Systems

Author:

Tian Ai-QingORCID,Chu Shu-ChuanORCID,Pan Jeng-ShyangORCID,Liang Yongquan

Abstract

The conventional maximum power point tracking (MPPT) method fails in partially shaded conditions, because multiple peaks may appear on the power–voltage characteristic curve. The Pigeon-Inspired Optimization (PIO) algorithm is a new type of meta-heuristic algorithm. Aiming at this situation, this paper proposes a new type of algorithm that combines a new pigeon population algorithm named Parallel and Compact Pigeon-Inspired Optimization (PCPIO) with MPPT, which can solve the problem that MPPT cannot reach the near global maximum power point. This hybrid algorithm is fast, stable, and capable of globally optimizing the maximum power point tracking algorithm. Therefore, the purpose of this article is to study the performance of two optimization techniques. The two algorithms are Particle Swarm Algorithm (PSO) and improved pigeon algorithm. This paper first studies the mechanism of multi-peak output characteristics of photovoltaic arrays in complex environments, and then proposes a multi-peak MPPT algorithm based on a combination of an improved pigeon population algorithm and an incremental conductivity method. The improved pigeon algorithm is used to quickly locate near the maximum power point, and then the variable step size incremental method INC (incremental conductance) is used to accurately locate the maximum power point. A simulation was performed on Matlab/Simulink platform. The results prove that the method can achieve fast and accurate optimization under complex environmental conditions, effectively reduce power oscillations, enhance system stability, and achieve better control results.

Funder

Natural Science Foundation of Fujian Province

Fujian Provincial Department of Science and Technology

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3