Antiretrovirals Promote Insulin Resistance in HepG2 Liver Cells through miRNA Regulation and Transcriptional Activation of the NLRP3 Inflammasome

Author:

Mohan Jivanka1ORCID,Ghazi Terisha1ORCID,Mazibuko Makabongwe S.1,Chuturgoon Anil A.1ORCID

Affiliation:

1. Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa

Abstract

Metabolic syndrome (MetS) is a non-communicable disease characterized by a cluster of metabolic irregularities. Alarmingly, the prevalence of MetS in people living with Human Immunodeficiency Virus (HIV) and antiretroviral (ARV) usage is increasing rapidly. Insulin resistance is a common characteristic of MetS that leads to the development of Type 2 diabetes mellitus (T2DM). The progression of insulin resistance is strongly linked to inflammasome activation. This study aimed to draw links between the combinational use of Tenofovir disoproxil fumarate (TDF), Lamivudine (3TC), and Dolutegravir (DTG), and inflammasome activation and subsequent promotion of insulin resistance following a 120 h treatment period in HepG2 liver in vitro cell model. Furthermore, we assess microRNA (miR-128a) expression as a negative regulator of the IRS1/AKT signaling pathway. The relative expression of phosphorylated IRS1 was determined by Western blot. Transcript levels of NLRP3, IL-1β, JNK, IRS1, AKT, PI3K, and miR-128a were assessed using quantitative PCR (qPCR). Caspase-1 activity was measured using luminometry. Following exposure to ARVs for 120 h, NLRP3 mRNA expression (p = 0.0500) and caspase-1 activity (p < 0.0001) significantly increased. This was followed by a significant elevation in IL-1β in mRNA expression (p = 0.0015). Additionally, JNK expression (p = 0.0093) was upregulated with coinciding increases in p-IRS1 protein expression (p < 0.0001) and decreased IRS1 mRNA expression (p = 0.0004). Consequently, decreased AKT (p = 0.0005) and PI3K expressions (p = 0.0007) were observed. Interestingly miR-128a expression was significantly upregulated. The results indicate that combinational use of ARVs upregulates inflammasome activation and promotes insulin resistance through dysregulation of the IRS1/PI3K/AKT insulin signaling pathway.

Funder

DAAD-NRF In-Country Master’s and Doctoral Scholarships Programme

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3