Effect of the Nanorough Surface of TiO2 Thin Films on the Compatibility with Endothelial Cells

Author:

Zhuravleva Irina Yu.1,Surovtseva Maria A.12ORCID,Vaver Andrey A.1,Suprun Evgeny A.3ORCID,Kim Irina I.12,Bondarenko Natalia A.12,Kuzmin Oleg S.45,Mayorov Alexander P.6,Poveshchenko Olga V.12

Affiliation:

1. E. Meshalkin National Medical Research Center, RF Ministry of Health, 15 Rechkunovskaya St., 630055 Novosibirsk, Russia

2. Research Institute of Clinical and Experimental Lymphology, Branch of the Federal Research Center Institute of Cytology and Genetics SB RAS, 2 Timakova St., 630060 Novosibirsk, Russia

3. Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk, Russia

4. Institute of Strength Physics and Materials Science, Siberian Branch Russian Academy of Sciences, 2/4, pr. Akademicheskii, 634055 Tomsk, Russia

5. VIP Technologies Ltd., 634055 Tomsk, Russia

6. Institute of Laser Physics of Siberian Branch, Russian Academy of Sciences, 15B Lavrentiev Av., 630090 Novosibirsk, Russia

Abstract

The cytocompatibility of titanium oxides (TiO2) and oxynitrides (N-TiO2, TiOxNy) thin films depends heavily on the surface topography. Considering that the initial relief of the substrate and the coating are summed up in the final topography of the surface, it can be expected that the same sputtering modes result in different surface topography if the substrate differs. Here, we investigated the problem by examining 16 groups of samples differing in surface topography; 8 of them were hand-abraded and 8 were machine-polished. Magnetron sputtering was performed in a reaction gas medium with various N2:O2 ratios and bias voltages. Abraded and polished uncoated samples served as controls. The surfaces were studied using atomic force microscopy (AFM). The cytocompatibility of coatings was evaluated in terms of cytotoxicity, adhesion, viability, and NO production. It has been shown that the cytocompatibility of thin films largely depends on the surface nanostructure. Both excessively low and excessively high density of peaks, high and low kurtosis of height distribution (Sku), and low rates of mean summit curvature (Ssc) have a negative effect. Optimal cytocompatibility was demonstrated by abraded surface with a TiOxNy thin film sputtered at N2:O2 = 1:1 and Ub = 0 V. The nanopeaks of this surface had a maximum height, a density of about 0.5 per 1 µm2, Sku from 4 to 5, and an Ssc greater than 0.6. We believe that the excessive sharpness of surface nanostructures formed during magnetron sputtering of TiO2 and N-TiO2 films, especially at a high density of these structures, prevents both adhesion of endothelial cells, and their further proliferation and functioning. This effect is apparently due to damage to the cell membrane. At low height, kurtosis, and peak density, the main factor affecting the cell/surface interface is inefficient cell adhesion.

Funder

the state assignment of the Ministry of Health of the Russian Federation

the State Assignment of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3