Study on the Wetting and Permeation Properties of Bio-Oil as Bitumen Rejuvenator

Author:

Zheng Xuewen1,Xu Wenyuan1,Ji Weishuai1,Cao Kai2

Affiliation:

1. School of Civil Engineering, Northeast Forestry University, Harbin 150040, China

2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

Abstract

In order to explore the diffusion and regeneration of bio-oil in aged bitumen, waste cooking oil (WCO), waste wood oil (WWO) and straw liquefied residue oil (SLRO) were selected in this paper. According to the surface wetting theory, the contact angle is obtained by combining laboratory experiments with molecular dynamics (MD) simulation, and the wetting parameters are calculated to evaluate the wetting behavior of bio-oil. The experimental phenomena of the wetting process and the main factors driving wetting are further analyzed. A permeation experiment is designed to obtain the permeation fusion layer (PFL). If the crossover modulus of PFLs changes compared with that of the aged bitumen, it is determined that the bio-oil penetrates the corresponding fusion layer. The results show that the motion of bio-oil included spreading and shrinking processes, and a precursor film played a pivotal role in the transportation of nanodroplets. Higher surface tension, lower viscosity and cohesion can effectively promote the wettability of bio-oil. A higher temperature and a longer permeation time are conducive to the permeation of bio-oil in aged bitumen. WCO with the strongest wettability has the weakest permeability, while WWO has superior permeability and can activate the macromolecules’ surface activity, but its wettability is relatively weak. It is necessary to further modify WCO and WWO to be suitable rejuvenators.

Funder

Department of Transportation of Heilongjiang Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference69 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3