Solid Lipid Nanoparticles: Applications and Prospects in Cancer Treatment

Author:

Sivadasan Durgaramani1,Ramakrishnan Kalaivanan2,Mahendran Janani3,Ranganathan Hariprasad4,Karuppaiah Arjunan5ORCID,Rahman Habibur2

Affiliation:

1. Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia

2. Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore 641004, TN, India

3. Department of Pharmaceutics, College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore 641002, TN, India

4. Department of Pharmaceutical Analysis, PSG College of Pharmacy, Coimbatore 641004, TN, India

5. Department of Pharmaceutics, Karpagam College of Pharmacy, Coimbatore 641032, TN, India

Abstract

Recent advancements in drug delivery technologies paved a way for improving cancer therapeutics. Nanotechnology emerged as a potential tool in the field of drug delivery, overcoming the challenges of conventional drug delivery systems. In the field of nanotechnology, solid lipid nanoparticles (SLNs) play a vital role with a wide range of diverse applications, namely drug delivery, clinical medicine, and cancer therapeutics. SLNs establish a significant role owing to their ability to encapsulate hydrophilic and hydrophobic compounds, biocompatibility, ease of surface modification, scale-up feasibility, and possibilities of both active and passive targeting to various organs. In cancer therapy, SLNs have emerged as imminent nanocarriers for overcoming physiological barriers and multidrug resistance pathways. However, there is a need for special attention to be paid to further improving the conceptual understanding of the biological responses of SLNs in cancer therapeutics. Hence, further research exploration needs to be focused on the determination of the structure and strength of SLNs at the cellular level, both in vitro and in vivo, to develop potential therapeutics with reduced side effects. The present review addresses the various modalities of SLN development, SLN mechanisms in cancer therapeutics, and the scale-up potential and regulatory considerations of SLN technology. The review extensively focuses on the applications of SLNs in cancer treatment.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3