Transcriptome Analysis Reveals the Profile of Long Non-Coding RNAs during Myogenic Differentiation in Goats

Author:

Yang Chenyu1ORCID,Zhou Xinyi1,Xue Yanan1,Li Dandan1,Wang Linjie12ORCID,Zhong Tao12ORCID,Dai Dinghui1,Cao Jiaxue1ORCID,Guo Jiazhong12ORCID,Li Li1ORCID,Zhang Hongping12ORCID,Zhan Siyuan12ORCID

Affiliation:

1. Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China

2. Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China

Abstract

The long non-coding RNAs (lncRNAs) are emerging as essential regulators of the growth and development of skeletal muscles. However, little is known about the expression profiles of lncRNAs during the proliferation and differentiation of skeletal muscle satellite cells (MuSCs) in goats. In this study, we investigate potential regulatory lncRNAs that govern muscle development by performing lncRNA expression profiling analysis during the proliferation (cultured in the growth medium, GM) and differentiation (cultured in the differentiation medium, DM1/DM5) of MuSCs. In total, 1001 lncRNAs were identified in MuSC samples, and 314 differentially expressed (DE) (FDR < 0.05, |log2FC| > 1) lncRNAs were screened by pairwise comparisons from three comparison groups (GM-vs-DM1, GM-vs-DM5, DM1-vs-DM5). Moreover, we identified the cis-, trans-, and antisense-regulatory target genes of DE lncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that these target genes were significantly enriched in muscle development-related GO terms and KEGG pathways. In addition, the network of interactions between DE lncRNAs and their target genes was identified, which included well-known myogenesis regulators such as Myogenic differentiation 1 (MyoD), Myogenin (MyoG), and Myosin heavy chain (MyHC). Meanwhile, competing endogenous RNA (ceRNA) network analysis showed that 237 DE lncRNAs could bind to 329 microRNAs (miRNAs), while miRNAs could target 564 mRNAs. Together, our results provide a genome-wide resource of lncRNAs that may contribute to myogenic differentiation in goats and lay the groundwork for future investigation into their functions during skeletal muscle development.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3