6-Gingerol Ameliorates Hepatic Steatosis, Inflammation and Oxidative Stress in High-Fat Diet-Fed Mice through Activating LKB1/AMPK Signaling

Author:

Liu Yuzhe12ORCID,Li Dong1,Wang Shang1,Peng Ze1,Tan Qi1,He Qifeng12,Wang Jianwei1

Affiliation:

1. Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China

2. College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China

Abstract

6-Gingerol, one of the major pharmacologically active ingredients extracted from ginger, has been reported experimentally to exert hepatic protection in non-alcoholic fatty liver disease (NAFLD). However, the molecular mechanism remains largely elusive. RNA sequencing indicated the significant involvement of the AMPK signaling pathway in 6-gingerol-induced alleviation of NAFLD in vivo. Given the significance of the LKB1/AMPK pathway in metabolic homeostasis, this study aims to investigate its role in 6-gingerol-induced mitigation on NAFLD. Our study showed that 6-gingerol ameliorated hepatic steatosis, inflammation and oxidative stress in vivo and in vitro. Further experiment validation suggested that 6-gingerol activated an LKB1/AMPK pathway cascade in vivo and in vitro. Co-immunoprecipitation analysis demonstrated that the 6-gingerol-elicited activation of an LKB1/AMPK pathway cascade was related to the enhanced stability of the LKB1/STRAD/MO25 complex. Furthermore, radicicol, an LKB1 destabilizer, inhibited the activating effect of 6-gingerol on an LKB1/AMPK pathway cascade via destabilizing LKB1/STRAD/MO25 complex stability in vitro, thus reversing the 6-gingerol-elicited ameliorative effect. In addition, molecular docking analysis further predicated the binding pockets of LKB1 necessary for binding with 6-gingerol. In conclusion, our results indicate that 6-gingerol plays an important role in regulating the stability of the LKB1/STRAD/MO25 complex and the activation of LKB1, which might weigh heavily in the 6-gingerol alleviation of NAFLD.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3