High-Performance Potassium-Selective Biosensor Platform Based on Resistive Coupling of a-IGZO Coplanar-Gate Thin-Film Transistor

Author:

Hyun Tae-Hwan1ORCID,Cho Won-Ju1ORCID

Affiliation:

1. Department of Electronic Materials Engineering, Kwangwoon University, 20, Gwangun-ro, Nowon-gu, Seoul 01897, Republic of Korea

Abstract

The potassium (K+) ion is an essential mineral for balancing body fluids and electrolytes in biological systems and regulating bodily function. It is associated with various disorders. Given that it exists at a low concentration in the human body and should be maintained at a precisely stable level, the development of highly efficient potassium-selective sensors is attracting considerable interest in the healthcare field. Herein, we developed a high-performance, potassium-selective field-effect transistor-type biosensor platform based on an amorphous indium gallium zinc oxide coplanar-gate thin-film transistor using a resistive coupling effect with an extended gate containing a potassium-selective membrane. The proposed sensor can detect potassium in KCl solutions with a high sensitivity of 51.9 mV/dec while showing a low sensitivity of <6.6 mV/dec for NaCl, CaCl2, and pH buffer solutions, indicating its high selectivity to potassium. Self-amplification through the resistive-coupling effect enabled an even greater potassium sensitivity of 597.1 mV/dec. Additionally, we ensured the stability and reliability of short- and long-term detection through the assessment of non-ideal behaviors, including hysteresis and drift effects. Therefore, the proposed potassium-sensitive biosensor platform is applicable to high-performance detection in a living body, with high sensitivity and selectivity for potassium.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3