Sex-Specific Models to Predict Insulin Secretion and Sensitivity in Subjects with Overweight and Obesity

Author:

Beaudry Myriam123ORCID,Bissonnette Simon123,Lamantia Valérie123,Devaux Marie23,Faraj May123

Affiliation:

1. Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada

2. Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada

3. Montréal Diabetes Research Center (MDRC), Montréal, QC H2X 0A9, Canada

Abstract

Sex-specific differences exist in insulin secretion (ISec) and sensitivity (IS) in humans. However, current fasting indices used to estimate them, such as HOMA and QUICKI, are not sex-specific. We aimed to develop sex-specific models to improve the prediction of ISec and IS by fasting measures in adults with overweight/obesity. A post hoc analysis was conducted on baseline data of two clinical trials completed between 2010 and 2020 (37 men and 61 postmenopausal women, 45–73 years, BMI > 25 kg/m2, without chronic disease). Glucose-induced insulin or C-peptide secretions and IS were measured using gold-standard Botnia-clamps, which is a 1 h intravenous glucose tolerance test followed by a 3 h hyperinsulinemic–euglycemic clamp. Stepwise regression analysis using anthropometric and fasting plasma glucose, insulin, and lipoprotein-related measures was used to predict ISec and IS. First-phase, second-phase and total glucose-induced ISec were predicted by a combination of fasting plasma insulin and apoB without or with plasma glucose, triglyceride, and waist circumference in women (R2 = 0.58–0.69), and by plasma insulin and glucose without or with BMI and cholesterol in men (R2 = 0.41–0.83). Plasma C-peptide, alone in men or followed by glucose in women, predicted C-peptide secretion. IS was predicted by plasma insulin and waist circumference, followed by HDL-C in women (R2 = 0.57) or by glucose in men (R2 = 0.67). The sex-specific models agreed with the Botnia-clamp measurements of ISec and IS more than with HOMA or QUICKI. Sex-specific models incorporating anthropometric and lipoprotein-related parameters allowed better prediction of ISec and IS in subjects with overweight or obesity than current indices that rely on glucose and insulin alone.

Funder

Canadian Institutes of Health Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3