Progress of Research on the Physiology and Molecular Regulation of Sorghum Growth under Salt Stress by Gibberellin

Author:

Liu Jiao12,Wu Yanqing12,Dong Guichun12,Zhu Guanglong12ORCID,Zhou Guisheng12

Affiliation:

1. Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China

2. Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China

Abstract

Plant growth often encounters diverse abiotic stresses. As a global resource-based ecological problem, salinity is widely distributed and one of the major abiotic stresses affecting crop yields worldwide. Sorghum, a cereal crop with medium salt tolerance and great value for the development and utilization of salted soils, is an important source of food, brewing, energy, and forage production. However, in soils with high salt concentrations, sorghum experiences low emergence and suppressed metabolism. It has been demonstrated that the effects of salt stress on germination and seedling growth can be effectively mitigated to a certain extent by the exogenous amendment of hormonal gibberellin (GA). At present, most of the studies on sorghum salt tolerance at home and abroad focus on morphological and physiological levels, including the transcriptome analysis of the exogenous hormone on sorghum salt stress tolerance, the salt tolerance metabolism pathway, and the mining of key salt tolerance regulation genes. The high-throughput sequencing technology is increasingly widely used in the study of crop resistance, which is of great significance to the study of plant resistance gene excavation and mechanism. In this study, we aimed to review the effects of the exogenous hormone GA on leaf morphological traits of sorghum seedlings and further analyze the physiological response of sorghum seedling leaves and the regulation of sorghum growth and development. This review not only focuses on the role of GA but also explores the signal transduction pathways of GA and the performance of their responsive genes under salt stress, thus helping to further clarify the mechanism of regulating growth and production under salt stress. This will serve as a reference for the molecular discovery of key genes related to salt stress and the development of new sorghum varieties.

Funder

China National Key R&D Program

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference160 articles.

1. Soil and human security in the 21st century;Amundson;Science,2015

2. Salt bladders: Do they matter?;Shabala;Trends Plant Sci.,2014

3. Studies on Sustainable Agro-ecology System of Sweet Sorghum;Li;Sci. Agric. Sin.,2002

4. Sweet sorghum ideotypes: Genetic improvement of stress tolerance;Anami;Food Energy Secur.,2015

5. The Study on Production Performance and Feeding Value of the Different Species of Forage Sorghum in Ningxia Yellow River Irrigation Area;Zhu;Chin. J. Grassl.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3