Histological and Histomorphometric Evaluation of Implanted Photodynamic Active Biomaterials for Periodontal Bone Regeneration in an Animal Study

Author:

Sigusch Bernd1,Kranz Stefan1ORCID,von Hohenberg Andreas Clemm1,Wehle Sabine1,Guellmar André1,Steen Dorika2,Berg Albrecht3,Rabe Ute1,Heyder Markus1,Reise Markus1

Affiliation:

1. Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany

2. Biolitec Research GmbH, 07745 Jena, Germany

3. Innovent Technologieentwicklung e.V., 07745 Jena, Germany

Abstract

Recently, our group developed two different polymeric biomaterials with photodynamic antimicrobial surface activity for periodontal bone regeneration. The aim of the present study was to analyze the biocompatibility and osseointegration of these materials in vivo. Two biomaterials based on urethane dimethacrylate (BioM1) and tri-armed oligoester-urethane methacrylate (BioM2) that additionally contained ß-tricalcium phosphate and the photosensitizer mTHPC (meso-tetra(hydroxyphenyl)chlorin) were implanted in non-critical size bone defects in the femur (n = 16) and tibia (n = 8) of eight female domestic sheep. Bone specimens were harvested and histomorphometrically analyzed after 12 months. BioM1 degraded to a lower extent which resulted in a mean remnant square size of 17.4 mm², while 12.2 mm² was estimated for BioM2 (p = 0.007). For BioM1, a total percentage of new formed bone by 30.3% was found which was significant higher compared to BioM2 (8.4%, p < 0.001). Furthermore, BioM1 was afflicted by significant lower soft tissue formation (3.3%) as compared to BioM2 (29.5%). Additionally, a bone-to-biomaterial ratio of 81.9% was detected for BioM1, while 8.5% was recorded for BioM2. Implantation of BioM2 caused accumulation of inflammatory cells and led to fibrous encapsulation. BioM1 (photosensitizer-armed urethane dimethacrylate) showed favorable regenerative characteristics and can be recommended for further studies.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3