Monitoring Nrf2/ARE Pathway Activity with a New Zebrafish Reporter System

Author:

Badenetti Lorenzo12,Manzoli Rosa34,Rubin Michela3,Cozza Giorgio3ORCID,Moro Enrico3ORCID

Affiliation:

1. Department of Women’s and Children’s Health, University of Padova, I-35128 Padova, Italy

2. Pediatric Research Institute “Città della Speranza”, I-35127 Padova, Italy

3. Department of Molecular Medicine, University of Padova, I-35121 Padova, Italy

4. Department of Biology, University of Padova, I-35121 Padova, Italy

Abstract

Among multiple cytoprotective mechanisms, eukaryotic cells exhibit a complex transcriptional program relying on the Nrf2 transcription factor, which is generally recruited upon biological stressors including oxidative-stress-based cellular insults. The relevance of this master regulator has remarkably emerged in recent years in several research fields such as cancer, inflammatory disorders and age-related neurological diseases. Here, we document the generation and characterization of a novel Nrf2/ARE pathway biosensor fish which exhibits a dynamic spatiotemporal expression profile during the early developmental stages. The transgenic line is responsive to known Nrf2 pathway modulators but also to Edaravone, which direct activity on the Nrf2 pathway has never been documented in a live transgenic fish model. We also show that the reporter is faithfully activated during fin regeneration, and its degree of expression is slightly affected in a glucocerebrosidase (Gba1) morphant zebrafish model. Therefore, this novel transgenic fish may represent a valuable tool to be exploited for the characterization of zebrafish models of human diseases, as well as for primary high-throughput drug screening.

Funder

University of Padova

National MPS Society

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3