Docking and Selectivity Studies of Covalently Bound Janus Kinase 3 Inhibitors

Author:

Zhong Haizhen A.1ORCID,Almahmoud Suliman2

Affiliation:

1. Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE 68182, USA

2. Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51542, Saudi Arabia

Abstract

The Janus kinases (JAKs) are a family of non-receptor cytosolic protein kinases critical for immune signaling. Many covalently bound ligands of JAK3 inhibitors have been reported. To help design selective JAK inhibitors, in this paper, we used five model proteins to study the subtype selectivity of and the mutational effects on inhibitor binding. We also compared the Covalent Dock programs from the Schrodinger software suite and the MOE software suite to determine which method to use for the drug design of covalent inhibitors. Our results showed that the docking affinity from 4Z16 (JAK3 wild-type model), 4E4N (JAK1), 4D1S (JAK2), and 7UYT (TYK2) from the Schrödinger software suite agreed well with the experimentally derived binding free energies with small predicted mean errors. However, the data from the mutant 5TTV model using the Schrödinger software suite yielded relatively large mean errors, whereas the MOE Covalent Dock program gave small mean errors in both the wild-type and mutant models for our model proteins. The docking data revealed that Leu905 of JAK3 and the hydrophobic residue at the same position in different subtypes (Leu959 of JAK1, Leu932 of JAK2, and Val981 of TYK2) is important for ligand binding to the JAK proteins. Arg911 and Asp912 of JAK3, Asp939 of JAK2, and Asp988 of TYK2 can be used for selective binding over JAK1, which contains Lys965 and Glu966 at the respective positions. Asp1021, Asp1039, and Asp1042 can be utilized for JAK1-selective ligand design, whereas Arg901 and Val981 may help guide TYK2-selective molecule design.

Funder

the University of Nebraska, Omaha

the Ministry of Education Scholarship, Qassim University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3